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ABSTRACT 
Motivation: Current genotyping technologies allow testing of more 
than 500,000 SNPs in thousands of individuals. Data storage and 
analysis of such large datasets is far from being trivial and gener-
ates multiple bottlenecks. 
Here I show that by the use of a small C library in conjunction with 
fast R statistical routines also a single trait analysis of 500,000 SNPs 
in 270 individuals can be performed in less than 1 hour (online sup-
plement box 1 and 2). Additional speed gain can be achieved by 
using parallel computing as most tasks involve independent, serial 
data processing.  SNP allele frequencies in the current Affymetrix 
500K array turn out to be rather equally distributed with a peak at 
low allele frequencies. Approximately 1% of all SNPs are in multi-
copy regions while 2-6% show low call rates; taken together they 
explain only a quarter of all SNPs that deviate from Hardy-Weinberg 
equilibrium (online supplement tables 1-4, figures 1-3). Less than 
half of all SNPs are situated on high LD blocks. 
In summary, also large SNP datasets can be analyzed on a desktop 
computer. The overall data quality will be high if a few caveats are 
taken into account. 

1 INTRODUCTION  
New genotyping technologies like the Affymetrix GeneChip 

Mapping 500K Array Set or llumina’s HumanHap300 BeadChip 
with 317,000 SNPs allow for the first time dense whole-genome 
association studies. The Affymetrix assay uses two arrays, each 
capable of genotyping on average 250,000 SNPs (approximately 
262,000 for Nsp1 arrays and 238,000 for Sty1 arrays). Nsp1 and 
Sty1 denote the initial restriction enzyme cutting of the native 
DNA, before being ligated, amplified, fragmented, end labeled, 
and hybridized to a chip that is scanned for fluorescence signals. 
The analysis of this new generation of SNP genotyping chips cre-
ates a challenge of storing and managing large datasets. 

Although there is considerable experience with large-scale gene 
expression arrays for more than one decade, the number of expres-
sion experiments is usually limited. After normalization expressed 
RNAs are often tested only for clustering and even then only top-
ranked expressed RNAs are further evaluated. Most of these tasks 
can still be done with conventional desktop computers. The prob-
lem is somewhat different with SNP genotyping chips where each 
of the 500,000 SNPs need to be tested in up to 5,000 individuals. 
Association studies do not only require testing of several traits and 
subgroup analysis of billions of genotypes, there are also more 
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complex tasks like binning into high LD regions and haplotype 
construction. 

The initial attempt to load the genotypes of such a SNP chip 
study in an industry standard database was not successful. Al-
though having used this database for some time, the import of 540 
chip sets ended several times with error messages. Accessing the 
database over the intranet by the ODBC interface turned out to be 
unacceptable slow, given the large amount of data transferred with 
each query. Running the analysis directly on the database host 
computer was also not an option as the additionally CPU load sig-
nificantly downgraded database performance, ending up with 
analysis times of up to 1 week for a single trait.  

As there is currently also no information available about ge-
nomic sequence coverage, allele frequency, Hardy-Weinberg dis-
tribution, and LD block binning of these genotyping sets, the goal 
for this study was twofold: (1) to optimize data storage for a 135 
million SNP project to work on a conventional desktop computer 
and (2) to provide a first view on allele frequencies as well as other 
background data. All analysis should be platform independent and 
available with software in the public domain. 

2 METHODS 
Clinical sample. Individuals contributing DNA samples to the hapmap 

project have come from a total of 270 people and 4 ethnical diverse groups. 
The Yoruba people of Ibadan, Nigeria, provided 30 sets of samples from 
two parents and an adult child (YRI). Another 30 U.S. trios collected in 
1980 from U.S. residents with Northern and Western European ancestry 
come from the Centre d'Etude du Polymorphisme Humain registry (CEU). 
In Japan, 45 unrelated individuals from the Tokyo area provided samples 
(JPT) as well  45 unrelated individuals from Beijing/China (CHB) [Alt-
shuler].  

Genotype data. SNPs for the 500K Array Set have been selected for in-
clusion for their suitability to the laboratory protocol and minimum allele 
frequencies. Following sample interrogation genotypes were called by the 
proprietary Affymetrix GeneChip Genotyping Analysis Software (GTYPE, 
see GeneChip  Operating Software User’s Guide for instructions on .dat 
and .cel file generation). GTYPE 4.0 provides a convenient interface to 
group file sets and export into various formats where here the tab delimited 
format was selected. For this project, data were downloaded from the pub-
lic Affymetrix website (as a single zip file (500K_HapMap270.zip) that 
contains in two large ASCII text files SNP genotypes in 500,568 rows and 
270 individuals arranged in columns.  

Data storage and analysis. For data storage the SQLite 3.3.1 library was 
used. All genotype data were imported into single tables by the n-col and 
the 3-col method. A small routine in R software was then used to count 
alleles for benchmarking. All benchmarks were performed on a standard 
Windows XP system with a Intel® Pentium® M processor with 2.0 GHz, 
using 1 GB main memory, and a 20 GB harddisk partition freshly format-
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ted with NTFS using 64 MB clusters with deactivated virus scanner. For 
parallel computing R version 2.2.1 [R Core Team]) were translated from 
source into 64-bit code to run on a linux cluster IBM e1350 under Suse 
Linux Enterprise Server 9. Hardy-Weinberg equilibrium was determined 
also by ethnical group using an exact test [Wigginton]. All SNP sequence 
(plus/minus 16 bases were aligned to the finished human genome assembly 
(hg17, May 2004), all known human repeat sequences  and to the mito-
chondrial genome (Cambridge reference sequence 02/07/2005) using blat 
software. LD blocks and haplotype information was generated using hap-
loview [Barrett] and results transformed into BED files that can be merged 
into genome browser data [Kent] (http://genome.ucsc.edu/cgi-
bin/hgTracks?org=human&position=chr12&hgt.customText=http://cooke.g
sf.de/Affx500Kbl.gz).  

3 RESULTS 
I implemented first a data preprocessing step by a short Perl script 
(online supplement box 1). This script stripped headers, recoded 
missing values and prepared another script that will import all data 
into SQLite format (www.sqlite.org). SQLite is a small C library, 
that forms a self-contained, embeddable, zero-configuration, SQL-
92 compliant database engine supporting up to 2 terabytes in size. 
This procedure was by factor 5 to 100 faster compared to bulk data 
upload to an industry standard client-server database (online sup-
plement table 1). Reason for the excellent performance of SQLITE 
may be seen by the simple API, the small and efficient code with-
out any superfluous database features. 
Initial row/column structure was either unchanged (n-col method) 
or reverted to each genotype in a single line with SNP identifier, 
person identifier and genotype (3-col method). The 3-col method 
was tested as most databases show maximum column limits. De-
pending on release version and operating system these limits range 
from 250 (PostgreSQL), 255 (MS SQL Server), 1024 (mySQL), 
1000 (Oracle) or 8000 (IBM DB2). The n-col and 3-col approach 
differed markedly where n-col was by factor 40 faster than 3-col.  
None of both methods showed memory problems while the 3-col 
approach is probably suited to billions of genotypes. The n-col 
approach has single peak memory usage due to a single array 
transpose step that could lead to memory problems by testing more 
than 1,000 probands. Due to the modular approach, larger proband 
sizes may be easily compensated by using smaller batch sizes. 3-
col had even more disadvantages when building the final analysis 
dataset by its large overhead (the “XML” effect, leading to 10-fold 
file size) and much higher indexing time as this has to be done on 
135 million and not only 500,000 datasets.  
All further operations were then optimized in the R programming 
environment (www.r-project.org) during tedious steps to avoid 
unnecessary data read/write disk access, sorting, indexing or merg-
ing. Loop numbers and array sizes of processed genotypes were 
varied in a wide range. A single outer loop (running 50 times in-
cluding 10,000 SNPs) with one nested loop (running 10 times in-
cluding 1,000 SNPs) produced the best benchmarks (online sup-
plement box 2 and table 1). Too small arrays needed to much I/O 
operations slowing down the overall performance, while too large 
arrays need too much time to address certain array positions. Dur-
ing project start I even used a third inner loop (running 1,000 times 
on each single SNPs) which was then replaced by a short function 
that is being applied to all columns. This had even more advan-
tages when computation was being parallelized between multiple 
processors. Each loop level could be used to divide computing load 

to different processors. This choice depends heavily on the overall 
architecture of a network, e.g. number of nodes, memory and mes-
sage passing time between nodes. Parallelizing of outer loops 
would need a major rewrite of the program (and making it specific 
for our local cluster architecture) while parallelizing the most inner 
loop is less demanding. The R package “snow” already offers a 
load balancing version of the “apply” function where it should be 
possible in theory to downsize the current processing time by di-
viding processing time by the number of nodes. Although extra 
overhead is created by additional master - slave communication 
this may be compensated by the higher CPU speed of the single 
nodes. If this prediction is correct, is the subject of current test 
runs. So far, processing time was only been optimized until the 
most inner loop. All functions that are being applied at this stage 
(e.g. allele counting, HWE estimation, LD binning, haplotype con-
struction) need to be extra benchmarked for large datasets. 
In addition I established some quality checks for the Affymetrix 
500K array set. HWE was calculated by an implementation opti-
mized for large samples while any deviation from HWE in an out-
bred population without major stratification might indicate geno-
typing errors. Unexpectedly 5,817 SNPs showed multiple align-
ments in the human genome (list available upon request). Although 
some of these may be false positives, most of them are leading to a 
distortion of HWE (online tables 2 and 3). More than the double 
amount of SNPs are not in HWE compared to “single hit SNPs”, a 
reason why these SNPs should be masked from further analysis. 
By testing all SNP sequences in a collection of repeats in the hu-
man genome, I also found multiple sequence matches there (and 
even two on the mitochondrial genome). Missing genotypes might 
also indicate unequal amplification and indeed HWE decreased 
with increasing number of missing genotypes (online supplement 
table 3).  “Multiple hit SNPs” together with those showing more 
than 10% missing values, however, still do not explain more than 
20,8% (CEU) or 25,5% (YRI) of those SNPs not in HWE making 
some more unidentified errors possible mainly where HWE is 
severly violated. On a genome-wide level SNPs with deviation 
from HWE seem to be randomly distributed making the current 
selection a valuable screening set. In a last step, I have estimated 
LD block sizes which expand on average between 4,2 and 5,7 
SNPs. As shown earlier [Altshuler] probands of African origin as 
less as 40% of all SNPs inside high LD regions. 
In summary, the use of a simple C database library linked to fast R 
routines makes the analysis of large SNP datasets possible even on 
inexpensive desktop workstation. 1% of the current Affymetrix 
500K SNP set may be masked for unreliable results in multi-copy 
regions as well as all SNPs with less than 90% call rate. 
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