https://www.wjst.de/blog/sciencesurf/2025/06/how-to-run-llama-on-your-local-pdfs/ Page 1

SOFTWARE, TECH

HOW TO RUN LLAMA ON YOUR LOCAL PDFS

14.06.2025

| needed this urgently for indexing PDFs as Spotlight on the Mac is highly erratic after all
this years.

Anything LLM seemed the most promising approach with an easy to use GUI and being
well documented. But indexing failed after several hours, so | went on with LM Studio. Also
this installation turned out to be more complicated than expected due to library “depen-

dency hell” and version mismatch spiralling...

1. Download and install LM Studio
2. From inside LM Studio download your preferred model
3. Index your PDFs in batches of 1,000 using the Python script below

4. Combine indices and run queries against the full index

30.000 PDFs result in a 4G index while the system is unfortunately not very responsive
(yet)

index.py

import os

from tqdm import tqdm

from multiprocessing import get context, TimeoutError

from pdfminer.high level import extract text

from sentence transformers import SentenceTransformer

from llama index.core import VectorStoreIndex, Document, Settings
from llama index.llms.ollama import Ollama

from 1lama index.embeddings.huggingface import HuggingFaceEmbedding

=== CONFIG ===
os.environ["TOKENIZERS PARALLELISM"] = "false"
PDF DIR = "/Users/xxx/Documents”

https://www.wjst.de/blog/sciencesurf/category/computer-software/
https://www.wjst.de/blog/sciencesurf/category/tech/
https://www.wjst.de/blog/sciencesurf/2025/06/how-to-run-llama-on-your-local-pdfs/
https://github.com/Mintplex-Labs/anything-llm
https://lmstudio.ai/

https://www.wjst.de/blog/sciencesurf/2025/06/how-to-run-llama-on-your-local-pdfs/ Page 2

INDEX BASE_DIR = "/Users/xxx/Store"

MODEL NAME = "sentence-transformers/all-MinilLM-L6-v2"
LLM_API_BASE = "http://localhost:11434/v1"

CHUNK SIZE = 10000

START CHUNK = 1

END CHUNK = 1

BAD LOG = os.path.join(INDEX BASE DIR, "bad files.txt")
TIMEOUT SECONDS = 60

=== Step 1: Get all PDFs ===
def get all pdfs(path):
pdf files = []
for root, , files in os.walk(path):
for file in files:
if file.lower().endswith(".pdf"):
pdf files.append(os.path.join(root, file))

return sorted(pdf files)

=== Step 2: Timeout-safe PDF parsing ===
def parse pdf safe(path):
try:

text = extract text(path)
return {"success": True, "doc": Document(text=text,
metadata={"file path": path})}
except Exception as e:
return {"success": False, "file path": path, "error": str(e)}

def parse pdfs parallel(paths, timeout=TIMEOUT SECONDS):
documents = []
print(f"Parsing {len(paths)} PDFs (timeout: {timeout}s each)...")

ctx = get context("spawn")
pool = ctx.Pool(processes=0s.cpu_count())

try:
for path in tgdm(paths, desc="Parsing PDFs"):
async_result = pool.apply async(parse pdf safe, (path,))
try:
result = async _result.get(timeout=timeout)
if result["success"]:
documents.append(result["doc"])

https://www.wjst.de/blog/sciencesurf/2025/06/how-to-run-llama-on-your-local-pdfs/ Page 3

else:
print(f"{result['file path']}: {result['error']}")
with open(BAD LOG, "a") as log:
log.write(f"FAIL: {result['file path']} ::
{result['error']1}\n")
except TimeoutError:
print(f"Timeout: {path}")
with open(BAD LOG, "a") as log:
log.write(f"TIMEOUT: {path}\n")
finally:
pool.terminate()
pool.join()

return documents

=== Step 3: Build and save index ===
def build index(documents, index dir):

print(f"Indexing {len(documents)} documents - {index dir}")

embed model =
HuggingFaceEmbedding(model name="sentence-transformers/all-MinilLM-L6-v
2")

1lm = OpenAI(api base="http://localhost:11434/v1",
api_key="1lm-studio")

Llm = Ollama(model="1lama3")

Settings.embed model = embed model
Settings.llm = 1llm

index = VectorStoreIndex.from documents(documents)
index.storage context.persist(persist dir=index dir)
print(f"Index saved to {index dir}")

=== MAIN ===

if npame == " main_ ":
all pdfs = get all pdfs(PDF DIR)
total = len(all pdfs)
total chunks = (total + CHUNK SIZE - 1) // CHUNK SIZE

os.makedirs (INDEX BASE DIR, exist ok=True)
open(BAD LOG, "w").close() # clear previous log

https://www.wjst.de/blog/sciencesurf/2025/06/how-to-run-llama-on-your-local-pdfs/ Page 4

for chunk num in range(START CHUNK, END CHUNK + 1):
start = (chunk num - 1) * CHUNK SIZE
end = min(start + CHUNK SIZE, total)
chunk paths = all pdfs[start:end]

index dir = os.path.join(INDEX BASE DIR, f"part {chunk num}")
if os.path.exists(index dir):
print(f"hunk {chunk num} already exists, skipping:
{index dir}")
continue

print(f"\nProcessing chunk {chunk num}/{total chunks} - files
{start+1} to {end}")

docs = parse pdfs parallel(chunk paths)

build index(docs, index dir)

query.py

import os

from 1lama index.core import StorageContext, load index from storage,
VectorStoreIndex, Document, Settings

from 1lama index.llms.openai import OpenAl

from 1lama index.embeddings.huggingface import HuggingFaceEmbedding

=== CONFIG ===
INDEX PARTS DIR = "/Users/xxx/Store"
MERGED INDEX DIR = os.path.join(INDEX PARTS DIR, “"merged")

PART DIRS = [

os.path.join(INDEX PARTS DIR, d)

for d in os.listdir(INDEX PARTS DIR)

if d.startswith("part ") and
os.path.isdir(os.path.join(INDEX PARTS DIR, d))
]

=== Setup LM Studio OpenAI-compatible API ===
os.environ["OPENAI API KEY"] = "not-needed" # dummy value to bypass
API key checks

os.environ["OPENAI API BASE"] = "http://localhost:1234/v1" # LM
Studio API base

https://www.wjst.de/blog/sciencesurf/2025/06/how-to-run-llama-on-your-local-pdfs/ Page 5

Embedding + LLM setup using LM Studio OpenAI API
Settings.embed model =

HuggingFaceEmbedding(model name="sentence-transformers/all-MinilLM-L6-v
2")

Settings.llm = OpenAI(

model="1lama-3.2-3b-instruct", # or your LM Studio supported
model
api key="not-needed", # dummy key, LM Studio ignores it

api base="http://localhost:1234/v1",

=== Load & collect all documents from partial indices ===
all documents = []

for part dir in sorted(PART DIRS):
print(f"Loading index from: {part dir}")
storage context =

StorageContext.from defaults(persist dir=part dir)
index = load index from storage(storage context)

for node in storage context.docstore.docs.values():
if isinstance(node, Document):
all documents.append(node)
else:
if hasattr(node, "get content") and hasattr(node,
"metadata"):
all documents.append(Document(text=node.get content(),
metadata=node.metadata))

print(f"Total documents to merge: {len(all documents)}")

=== Build and persist merged index ===

merged index = VectorStoreIndex.from documents(all documents)
merged index.storage context.persist(persist dir=MERGED INDEX DIR)
print(f"Merged index saved to: {MERGED INDEX DIR}")

=== Load merged index for querying ===

storage = StorageContext.from defaults(persist dir=MERGED INDEX DIR)
index = load index from storage(storage)

query engine = index.as query engine()

https://www.wjst.de/blog/sciencesurf/2025/06/how-to-run-llama-on-your-local-pdfs/ Page 6

=== Interactive query loop ===
print("\nAsk anything about the case. Type 'exit' or 'quit' to stop.")
while True:
query = input("You: ").strip()
if query.lower() in ("exit", "quit"):
break
try:
response = query engine.query(query)
print(f"Response: {response}\n")
except Exception as e:
print(f"Error: {e}\n")

7 Aug 2025

So far, | used Deepseek inside LM studio as my model of choice. Since yesterday we can
use also OpenAl’s gpt-0ss-20b which is basically OpenAl 04-mini.

CC-BY-NC Science Surf accessed 09.01.2026 [4

https://openai.com/de-DE/index/introducing-gpt-oss
https://www.wjst.de/blog/wp-content/themes/twentyfourteen-child1/pdf/?url=https://www.wjst.de/blog/sciencesurf/2025/06/how-to-run-llama-on-your-local-pdfs/
https://www.wjst.de/blog/impressum/
https://wordpress.org/

